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4D Printing of Rice Husk for Hygromorphic Self—Shaping Building Skin
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Abstract

This study presents an interdisciplinary, biomimetic approach to designing and fabricating adaptive architectural skin by transforming

agricultural waste-rice husks (RHs) into a functional, responsive building material. The primary objective was to develop a novel

hygromorphic bio-composite and integrate it into a responsive fagade system. A bio-composite was fabricated by combining RHs and a

bio-based PLA polymer, using a pellet 3D printer to produce humidity-responsive elements. The material's performance was rigorously

evaluated through 4D testing to understand how printing parameters and geometries influenced its moisture-responsive deformation. Our

results demonstrate a rapid, reversible, and controllable morphing response of RH-based skin prototype.
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1. Introduction

1.1 Research backgrounds

Rice husks (RHs), which account for about 20% of rice
grain  weight, are generated in  vast  quantities
worldwide-estimated at over 150 million tons annually from
the global rice production of 750-780 million tons [1].
Because of their low nutritional value and resistance to
biodegradation, RHs are mostly burned or landfilled, causing
air and water pollution [2]. Although efforts have been made
to repurpose RHs (e.g., silica extraction, thermal insulation,
biomass fuel) [3,4], their large-scale industrial use remains
limited.

The building sector consumes ~34% of global energy and
contributes ~37% of CO: emissions, prompting interest in
passive, low-energy solutions [5]. Among these, self-shaping

building skins employing smart materials and compliant
mechanisms offer a promising climate-adaptive strategy to
reduce energy demand and enhance indoor comfort while
limiting reliance on mechanical systems [6-10].

Hygromorphic composites transform shape with ambient
deformation,
[11,12]. This

study leverages the abundance, low thermal conductivity, and

humidity through moisture-driven anisotropic

typically in bilayer or multilayer structures

moisture responsiveness of rice husks to develop a passive

fagade system for regulating humidity and daylight,
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particularly suited to hot, humid climates.

1.2 Study objectives

This study aims to (i) demonstrate the 3D printability of
RH pellets
performance, (ii) develop reversible RH-PLA bio-composite

and analyze factors affecting hygromorphic

sheets and validate their humidity-driven actuation through a
kinetic shading prototype, and (iii) address research gaps by
assessing  the and mechanical

feasibility properties  of

RH-based 4D printing for architectural applications.
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Figure 1. Research framework and workflow for hygromorphic
fagade prototype development. (a) Conceptual sustainability
framework. (b) Research workflow for system development.
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2. Materials and Methods

2.1 Rice husk processing and pellet production

Rice husks were processed into ultrafine (<74 pm)
alkali-treated
bio-composite (RH20-PLA) was formulated by compounding
20 wt.% RH powder with PLA and extruded into filaments
via FGF 3D printing. The filaments were then cut into 3-5

powders to  improve  printability. A

mm granules for subsequent printing.

2.2 Composite design and 3D printing
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Figure 2. Design of 3D-printable RH bilayer composite: (a) layer
structure and dimensions; (b) printed surfaces.

As illustrated in Figure 2, a bilayer composite structure—
laminating an active (moisture-responsive) and two passive
layers—was designed. The active layer, 0.3 mm thick, was
printed using RH20-PLA with a 0 ° infill angle, while the
passive layers, each also 0.3 mm thick, were printed using
PLA with a 90 ° infill angle. Additionally, inter-path gaps
of approximately 0.1-0.15 mm were introduced between
printed lines in the passive layers. The outward-facing gaps
were intentionally designed to enable direct exposure of the
RH layer to
moisture-induced bending, and vice versa in air-dried

ambient humidity, thereby activating

conditions. Through iterative preliminary printing tests,

printing parameters were configured empirically (Table 1).

Nozzle Bed Printing Fill
Infill  Nozzle
Pellet . Temp.  Temp. speed density
angle size o o
(O (0O (uuy (%)
RH20-PLA 0° 2.0 180 80 45 50
PLA 90 ° 0.8 185 80 45 50

Table 1. FGF 3D Printing Parameters

2.3 4D Printing: Prototyping a hygromorphic building skin
system

As illustrated in Figure 3, the responsive building skin
prototype comprises six single-flap panels made of
4D-printed RH

triangular frame.

composites, mounted on a symmetric
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Figure 3. Hygromorphic fagade prototype: (a) modular assembly
of the hexagonal prototype with a three-arm central frame; (b)
Indoor/outdoor views in closed (top) and open (bottom) states; (c)
passive ventilation and light control via flap deformation under

hygromorphic actuation.

3. Results

3.1 Hygromorphic performance of flap specimens (n = 3)

The hygromorphic performance of individual flap
specimens was systematicallyevaluated, with a particular
focus on the average curvature response under controlled
humidity variations. During the absorption phase, as relative

humidity (relH) was progressively increased from 20% to
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95%, the average curvature showed a steady upward trend,
indicating effective moisture-induced bending. Conversely, the
desorption phase revealed a gradual yet marked reduction in
average curvature as relH decreased. The direct relationship
between average curvature and relH is further elucidated,

where the average fitted curve (R2 = 0.833) demonstrated a

strong positive correlation, with average curvature increasing

from approximately 0.0010 mm~ ' at 20% RH to around
1

0.0025 mm =~ at 95% RH. Despite some
variations, the overall consistent trend confirms the stable an

individual

d reversible hygromorphic actuation of the specimens (Figure
4).
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Figure 4. Hygromorphic performance of flaps in a single
absorption-desorption cycle (n = 3): (a) curvature change at stepwise
relH; (b) curvature-relH relationship.

3.2 Building skin module prototype
The facade module prototype was comprehensively tested
across varying humidity conditions in the chamber. The
exhibited

morphological change in response to moisture levels. Under

prototype  consistently dynamic, adaptive
high relative humidity, the individual triangular flaps actuated
into open positions, enhancing ventilation and permitting
greater ventilation and daylightingress. In contrast, at low
humidity, the flaps reverted to a more closed configuration,
effectively reducing permeability and improving enclosure.

(Figure 5, 6)
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Figure 5. Hygromorphic fagade prototype: closed state (dry); Open
state (humid).
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Figure 6. Prototype configurations at different humidity levels in
chamber.

4. Discussion and Concluding Remarks

This research presents a compelling framework for
transforming agricultural waste into a sustainable and
functional architectural material. The core concept revolves
around an interdisciplinary approach that links agro-waste,
biomaterial, and architectureto foster a more sustainable built
environment.

A novel hygromorphic bio-composite material was created
by combining agricultural byproducts, specifically rice husks,
with a bio-based polymer like PLA. The fabrication of this
responsive material marks a methodological advancement,
leveraging a FGF 3D printer instead of the conventional
filament-based systems or industrial extruders utilized in
previous studies [13-16].

The hygromorphic performance of the material was
rigorously evaluated. The results confirmed a reversible
morphing response that allows the facade to open and close
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according to predefined criteria. Crucially, this responsive
behavior was shown to react quickly to changing moisture
conditions. The successful integration of these elements into
a functional prototype therefore validates not only the
performance but also the material's environmental friendliness
and degradability, which are central to the research's
sustainability goals. This tangible outcome demonstrates the
practical feasibility of using bio-composites to create adaptive
building envelopes. Such systems offer significant potential
for passively regulating indoor climate, thereby improving
energy efficiency and occupant comfort without relying on
active mechanical systems.

This work eventually makes a significant contribution to
the fields of adaptive architecture by providing a concrete
example of circular economy in practice. By transforming a
low-value waste product into a high-performance building
component, the research offers a pathway toreduce material
waste and the environmental footprint of the construction

industry.
However, this study is not without limitation. Future
research should focus on the quantitative evaluation

oflong-term durability, scalability, and cost-effectiveness of
these bio-composite fagades. Nevertheless, this study provides
a solid scientific basis of valorizing agricultural waste by
developing a hygromorphic bio-composite from RHs and a
tangible proof-of-concept for creating 4D-printed, bio-sourced

climate-adaptive building skin.
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