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Online imitation learning for design-adaptive robotic bricklaying
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Abstract

Digital fabrication is advancing in construction, yet autonomous robotic realization of architectural designs remains underdeveloped. To

address this gap, we propose a design-adaptive vision-based bricklaying framework where robotic agents self-learn to adapt parametrically

varied wall typologies. Two wall types—Ilinear and curvilinear—were varied through five control parameters to generate diverse design

alternatives. Adaptation was accomplished through online imitation learning using the DAgger framework, followed by reinforcement learning

fine-tuning with image-based observations that incorporated demonstrations to enable rapid generalization. Simulation results show 72%

success in design-aware bricklaying across unseen parametric variants while baseline struggle to achieve moderate success even after training

with many episodes.
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1. Introduction

The integration of artificial intelligence (AI) and
reinforcement learning (RL) into robotic automation has
advanced significantly, yet its application in architectural
design and construction remains comparatively
underdeveloped. While industrial robotic arms are widely
utilized in manufacturing, their extension to autonomous,
design-informed fabrication workflows in architecture is still
in its formative stages. Deep reinforcement learning (DRL)
presents substantial potential for enabling robotic agents to
acquire advanced spatial reasoning and adaptive assembly
skills through iterative interaction with their environment.
However, research explicitly addressing DRL-driven design
adaptation and rule-based construction within architectural
contexts remains sparse.

A limited body of work has investigated self-learning
approaches for robotic assembly in architecture. Apolinarska
et al. (2021) introduced RL-based automation for timber
joints using Ape-X Deep Deterministic Policy Gradient
(Ape-X DDPG) for insertion tasks. Belousov et al. (2022)
applied model-free RL to assemble geometrically irregular

blocks with complex contact dynamics, coupling Rhino—
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Python  workflows  for

generation. Leder et al. (2024) explored RL-driven robotic

structurally  optimized  design
swarms for collective assembly, aligning multiple agents with

architectural ~ objectives ~ while  incrementally  refining
cooperative behaviors. More recently, Mehrotra and Yi (2025)
demonstrated rule-based design formation using DRL-driven
sequential planning and highlighted how the selection of RL
algorithms influences design variability while in another
study, Mehrotra and Yi (2025) automated the robot agent for

brick picking in 6D pose as the prior task for bricklaying.

In parallel, several studies have explored robotic fabrication
without incorporating self-learning mechanisms. Rakovi¢ et
al. demonstrated scripted bricklaying using RAPID, while
Song et al. employed augmented reality—based coding for
design-specific  construction. Esfangareh et al. applied
Q-learning to bricklaying tasks, and Amstberg et al
developed a fabrication manager for multi-actor timber
assembly through human-robot interaction. Xiong et al
proposed vision-driven robotic form-finding for generative
design exploration, whereas Groenewolt et al. and Bruun et
timber

al. investigated human-robot collaboration in

construction and multi-robot adaptation for historical

architectural reconstruction, respectively.

A persistent limitation across these approaches is the lack of
automated robotic fabrication capable of generalizing across
parametric design variations without explicit pre-encoding of
individual design instances. To bridge this gap, we present a
design-aware robotic bricklaying framework that leverages

parametric variation to enable autonomous agent adaptation
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to previously unseen design configurations. The objective of A five-layer Convolutional Neural Network (CNN) was

this study is to develop a self-learning framework for employed for visual feature extraction, producing a
design-adaptive bricklaying, leveraging vision-based 128-dimensional latent representation. These features were
observations and inference to enable autonomous adaptation concatenated with a 17-element state vector comprising six
to parametric design variations. current joint positions, six target pose parameters, and five

e wall design parameters. The combined input was passed
g“““’matedfab’i‘“i““f through three fully connected layers to output joint-angle
actions. Training was conducted in two sequential phases
(Figure 2). In the first phase online imitation learning was

done while in second phase, Soft Actor-Critic (SAC) fine

f tuning was done for precise placement. Dagger is utilized for

online imitation learning, in which for initial 1000 episodes

trajectories were saved and utilized for robot learning with

' . o ] simple behavior cloning, while in another 700 episodes
Figure 1. Automated Design-Aware Robotic Bricklaying policy training is controlled by query based supervised
learning. In these 700 episodes, policy was used for rollouts

2. Materials and Methods ) . . o .
(behavior) while expert actions were utilized for policy

This study investigates DRL-based robotic self-learning for comparison. After the Dagger training, policy was fine tuned
design-adaptive bricklaying, implemented within the PyBullet with SAC by keeping policy as actor and ran for 1300
physics engine (v3.2.6) integrated with the OpenAl Gym episodes, when policy almost converged. During SAC fine
framework (v0.26.2). The simulation environment incorporates tune, initially in no learning period only critic was updated
the ABB IRB2600-20/1.6 robotic arm and standard modular only by keeping actor freeze and after 5000 steps only
bricks (230 x 113 x 59 mm), both modeled through URDF normal SAC ()peration started.

files. An OnRobot 2FGP20 gripper was simulated as the

end-effector for brick placement, also defined via URDF. DAgger performance was benchmarked against a baseline

Visual observations for RGB and depth inference were Soft Actor-Critic (SAC) agent, both employing an identical

obtained using an Intel RealSense D456  camera. policy  architecture. ~ The policy input consisted of
Brick-picking from predefined piles was scripted, while concatenated visual features and state vectors (128,17), with
placement was learned through imitation learning. Parametric the output being six robot joint angles. For DAgger, both
wall designs were generated by varying two canonical observations and expert actions were used for supervised
templates—linear and curvilinear—using Latin Hypercube updates, whereas the SAC baseline relied solely on
Sampling (LHS) across five design parameters: wall starting observations, directly mapping them to joint-angle actions.
point, angular orientation relative to the y-axis, inter-brick The SAC reward function was designed to address the
spacing, sine-wave amplitude, and wave factor. high-precision requirements of bricklaying, which involves

6-DoF pose alignment. A shaped short-term reward combined
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Figure 2. DAgger scheme

- 868 -



distance and orientation components (Eq. 1-4), while a
sparse terminal reward of +1 was provided upon successful
brick placement. A placement was considered successful if
the positional error was below 0.15 m and the orientation
error within 7° across all axes.

Tgis = —|lcurrent_pos — target_pog||2| (eq. 1)
—angle_di

Xangle = —(1 - e(%saffx)) (eq. 2)

(eq. 3)

(—angle_dfffy)
Yangle = (1 —€ 0.35 )

Tangte = 05 X (Xangte + Yangto) + 0.5(Zgng10) (64 4)

3. Results and discussion

We evaluated performance by comparing the proposed
DAgger scheme with SAC fine-tune against a baseline SAC
agent in terms of average episodic rewards and success rates.
Figure 3(a) illustrates the mean episodic rewards over
batches of 20 episodes. During behavior cloning, rewards
remained consistently high (>-10) for the first 50 batches (=
1000 steps). Although rewards declined when student rollouts
began, the DAgger agent quickly recovered, surpassing
baseline performance during SAC fine-tune and stabilizing at
higher rewards after ~100 batches, whereas the baseline
agent only reached comparable levels after ~150 batches.
Figure 3(b) presents the average success rate over 25-episode
batches. The DAgger agent achieved >80% success within
the first SO batches, dropped to ~40% during student rollouts
and fine-tuning, but regained high performance within 150
batches just like baseline.
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Figure 3. (a) Average episodic rewards, (b) Average episodic

success for baseline and DAgger

However proposed scheme and baseline are showing similar
success during training, adaptation of baseline was poor with
new unseen tasks while our scheme showed 72 % success
rate (Figure 4). These results confirm that the DAgger+SAC
Fine-tuning framework enables more efficient and reliable
adaptation for design-aware bricklaying. Figure 5 presents
some screen shots of successful placement of brick with this
learned design-aware policy.
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Figure 4. Test results of Dagger

Figure 5. Successful placement snap shots
4. Conclusion

This study demonstrates that the proposed agent achieved
significantly faster adaptation to design variations compared
to baseline RL approaches. By integrating parametric design
principles  with  demonstration-guided  self-learning, the
framework enabled robotic agents to perform design-aware
bricklaying with robust adaptability, advancing the role of
intelligent  systems in  digital fabrication = workflows.
Nonetheless, further investigations are required to evaluate
effectiveness across broader parametric variations and to
explore  alternative enhanced

learning  algorithms  for

generalization and precision.
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