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Abstract

Digital fabrication is advancing in construction, yet autonomous robotic realization of architectural designs remains underdeveloped. To 
address this gap, we propose a design-adaptive vision-based bricklaying framework where robotic agents self-learn to adapt parametrically 
varied wall typologies. Two wall types—linear and curvilinear—were varied through five control parameters to generate diverse design 
alternatives. Adaptation was accomplished through online imitation learning using the DAgger framework, followed by reinforcement learning 
fine-tuning with image-based observations that incorporated demonstrations to enable rapid generalization. Simulation results show 72% 
success in design-aware bricklaying across unseen parametric variants while baseline struggle to achieve moderate success even after training 
with many episodes.
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1. Introduction

*The integration of artificial intelligence (AI) and
reinforcement learning (RL) into robotic automation has 
advanced significantly, yet its application in architectural 
design and construction remains comparatively 
underdeveloped. While industrial robotic arms are widely 
utilized in manufacturing, their extension to autonomous, 
design-informed fabrication workflows in architecture is still 
in its formative stages. Deep reinforcement learning (DRL) 
presents substantial potential for enabling robotic agents to 
acquire advanced spatial reasoning and adaptive assembly 
skills through iterative interaction with their environment. 
However, research explicitly addressing DRL-driven design 
adaptation and rule-based construction within architectural 
contexts remains sparse.
A limited body of work has investigated self-learning 
approaches for robotic assembly in architecture. Apolinarska 
et al. (2021) introduced RL-based automation for timber 
joints using Ape-X Deep Deterministic Policy Gradient 
(Ape-X DDPG) for insertion tasks. Belousov et al. (2022) 
applied model-free RL to assemble geometrically irregular 
blocks with complex contact dynamics, coupling Rhino–
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Python workflows for structurally optimized design 
generation. Leder et al. (2024) explored RL-driven robotic 
swarms for collective assembly, aligning multiple agents with 
architectural objectives while incrementally refining 
cooperative behaviors. More recently, Mehrotra and Yi (2025) 
demonstrated rule-based design formation using DRL-driven 
sequential planning and highlighted how the selection of RL 
algorithms influences design variability while in another 
study, Mehrotra and Yi (2025) automated the robot agent for 
brick picking in 6D pose as the prior task for bricklaying.

In parallel, several studies have explored robotic fabrication 
without incorporating self-learning mechanisms. Raković et 
al. demonstrated scripted bricklaying using RAPID, while 
Song et al. employed augmented reality–based coding for 
design-specific construction. Esfangareh et al. applied 
Q-learning to bricklaying tasks, and Amstberg et al.
developed a fabrication manager for multi-actor timber
assembly through human–robot interaction. Xiong et al.
proposed vision-driven robotic form-finding for generative
design exploration, whereas Groenewolt et al. and Bruun et
al. investigated human–robot collaboration in timber
construction and multi-robot adaptation for historical
architectural reconstruction, respectively.

A persistent limitation across these approaches is the lack of 
automated robotic fabrication capable of generalizing across 
parametric design variations without explicit pre-encoding of 
individual design instances. To bridge this gap, we present a 
design-aware robotic bricklaying framework that leverages 
parametric variation to enable autonomous agent adaptation 
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to previously unseen design configurations. The objective of 
this study is to develop a self-learning framework for 
design-adaptive bricklaying, leveraging vision-based 
observations and inference to enable autonomous adaptation 
to parametric design variations.

Figure 1. Automated Design-Aware Robotic Bricklaying

 
2. Materials and Methods

 This study investigates DRL-based robotic self-learning for 
design-adaptive bricklaying, implemented within the PyBullet 
physics engine (v3.2.6) integrated with the OpenAI Gym 
framework (v0.26.2). The simulation environment incorporates 
the ABB IRB2600-20/1.6 robotic arm and standard modular 
bricks (230 × 113 × 59 mm), both modeled through URDF 
files. An OnRobot 2FGP20 gripper was simulated as the 
end-effector for brick placement, also defined via URDF. 
Visual observations for RGB and depth inference were 
obtained using an Intel RealSense D456 camera. 
Brick-picking from predefined piles was scripted, while 
placement was learned through imitation learning. Parametric 
wall designs were generated by varying two canonical 
templates—linear and curvilinear—using Latin Hypercube 
Sampling (LHS) across five design parameters: wall starting 
point, angular orientation relative to the y-axis, inter-brick 
spacing, sine-wave amplitude, and wave factor.

Figure 2. DAgger scheme

A five-layer Convolutional Neural Network (CNN) was 
employed for visual feature extraction, producing a 
128-dimensional latent representation. These features were 
concatenated with a 17-element state vector comprising six 
current joint positions, six target pose parameters, and five 
wall design parameters. The combined input was passed 
through three fully connected layers to output joint-angle 
actions. Training was conducted in two sequential phases 
(Figure 2). In the first phase online imitation learning was 
done while in second phase, Soft Actor-Critic (SAC) fine 
tuning was done for precise placement. Dagger is utilized for 
online imitation learning, in which for initial 1000 episodes 
trajectories were saved and utilized for robot learning with 
simple behavior cloning, while in another 700 episodes 
policy training is controlled by query based supervised 
learning. In these 700 episodes, policy was used for rollouts 
(behavior) while expert actions were utilized for policy 
comparison. After the Dagger training, policy was fine tuned 
with SAC by keeping policy as actor and ran for 1300 
episodes, when policy almost converged. During SAC fine 
tune, initially in no learning period only critic was updated 
only by keeping actor freeze and after 5000 steps only 
normal SAC operation started.

DAgger performance was benchmarked against a baseline 
Soft Actor-Critic (SAC) agent, both employing an identical 
policy architecture. The policy input consisted of 
concatenated visual features and state vectors (128,17), with 
the output being six robot joint angles. For DAgger, both 
observations and expert actions were used for supervised 
updates, whereas the SAC baseline relied solely on 
observations, directly mapping them to joint-angle actions. 
The SAC reward function was designed to address the 
high-precision requirements of bricklaying, which involves 
6-DoF pose alignment. A shaped short-term reward combined 
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distance and orientation components (Eq. 1–4), while a 
sparse terminal reward of +1 was provided upon successful 
brick placement. A placement was considered successful if 
the positional error was below 0.15 m and the orientation 
error within 7° across all axes.

(eq. 1)

(eq. 2)

(eq. 3)

(eq. 4)

3. Results and discussion

We evaluated performance by comparing the proposed 
DAgger scheme with SAC fine-tune against a baseline SAC 
agent in terms of average episodic rewards and success rates. 
Figure 3(a) illustrates the mean episodic rewards over 
batches of 20 episodes. During behavior cloning, rewards 
remained consistently high (>-10) for the first 50 batches (≈
1000 steps). Although rewards declined when student rollouts 
began, the DAgger agent quickly recovered, surpassing 
baseline performance during SAC fine-tune and stabilizing at 
higher rewards after ~100 batches, whereas the baseline 
agent only reached comparable levels after ~150 batches. 
Figure 3(b) presents the average success rate over 25-episode 
batches. The DAgger agent achieved >80% success within 
the first 50 batches, dropped to ~40% during student rollouts 
and fine-tuning, but regained high performance within 150 
batches just like baseline. 

(a)

(b)

Figure 3. (a) Average episodic rewards, (b) Average episodic 

success for baseline and DAgger

However proposed scheme and baseline are showing similar 
success during training, adaptation of baseline was poor with 
new unseen tasks while our scheme showed 72 % success 
rate (Figure 4). These results confirm that the DAgger+SAC 
Fine-tuning framework enables more efficient and reliable 
adaptation for design-aware bricklaying. Figure 5 presents 
some screen shots of successful placement of brick with this 
learned design-aware policy.

Figure 4. Test results of Dagger

Figure 5. Successful placement snap shots 

4. Conclusion

This study demonstrates that the proposed agent achieved 
significantly faster adaptation to design variations compared 
to baseline RL approaches. By integrating parametric design 
principles with demonstration-guided self-learning, the 
framework enabled robotic agents to perform design-aware 
bricklaying with robust adaptability, advancing the role of 
intelligent systems in digital fabrication workflows. 
Nonetheless, further investigations are required to evaluate 
effectiveness across broader parametric variations and to 
explore alternative learning algorithms for enhanced 
generalization and precision.
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