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Abstract

Radiant-floor heating (RFH) is considered the prominent heating system for improving thermal comfort and advancing energy efficiency. 
However, due to the slow thermal response characteristic of RFH, the heating control issues arise in intermittently heated buildings. The 
optimal heating control for RFH involves predicting and operating at the appropriate start-stop times to ensure thermal comfort and efficient 
energy consumption. Despite numerous research studies suggesting optimal control in RFH based on MPC, they require a significant amount 
of computational time and parameter measurements. They are hard to apply in real-situated buildings. This study intends to predict the 
response time of the RFH system by indoor and outdoor environmental parameters to solve the problem of optimal start or stop of RFH. In 
this study, data collection was conducted in an intermittently heated building in Ansan, South Korea for a 2-month heating season, and all 
samples were taken from real building operations or occupancy. The method utilizes a decision tree algorithm to predict the response time 
based on the acquired historical data. The experimental results show that the time required for the RFH to reach the preset temperature can 
be predicted better using the proposed method, with an accuracy R2 of around 0.954 for the predicted time. This simple and adaptable 
control strategy provides a way to realize more sustainable and comfortable smart buildings.
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1. Introduction 
 *

Radiant floor heating (RFH) are considered a prominent 
system for improving thermal comfort and advancing energy 
efficiency. Therefore, interest in RFH has emerged globally, 
especially in residential buildings. Nevertheless, RFH still 
presents challenges for intermittently heated buildings. 
Because RFH has a slow thermal response characteristic. 
  Unlike convective heaters, RFH systems employ a distinct 
heat transfer mechanism. Specifically, within a conditioned 
environment, heat transfer initiates with the embedded pipes 
within the concrete layer. Subsequently, heat permeates the 
pipe walls before accumulating within the concrete layer(1). 
Remarkably, the heat stored in the floor layer is not 
immediately released into the indoor air but remains within 
the floor layer for an extended period. 
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Consequently, heat gradually disperses through the floor 
surface. This stored heat profoundly impacts the startup 
phase, resulting in a gradual rise in indoor temperature 
following RFH system activation. During this phase, thermal 
comfort cannot be guaranteed because of lower indoor 
temperature than intended. 

Conversely, upon system deactivation, the release of heat 
from the floor layer into the air impedes the decline in 
room temperature. The heating energy consumption is 
consumed inefficiently during this phase. Despite the indoor 
temperature does not need to meet the set-point temperature, 
it is being maintained for an extended period. Therefore, the 
issue of optimal control for RFH, accurately determining and 
operating at the appropriate startand stop moments, is very 
important.

Numerous scholars have explored and scrutinized methods 
for controlling RFH systems using diverse strategies to 
address the challenges posed by these systems. For example, 
Model Predictive Control (MPC) has emerged as an effective 
approach, utilizing demand prediction to directly manage 
RFH systems’ start or stop. This dynamic MPC control 
method effectively addresses the challenge of starting or 
stopping RFH operations compared to predetermined temporal 
parameters, dynamically regulating the time problem of RFH. 
Cho et al. attained optimal control within a residential 
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structure through the utilization of the MPC method on a 
centralized controller, based on the interplay among distinct 
thermal dynamics inherent to the RFH system and individual 
rooms. This approach resulted in energy conservation ranging 
from 14% to 46%(2). However, the implementation of MPC 
involves solving optimization problems for each control step, 
potentially demanding extensive computational resources, and 
rendering it unsuitable for systems with stringent time 
constraints. Furthermore, its applicability to the enhancement 
and upgrade of existing RFH systems is limited. 
Additionally, the accurate tuning of the MPC controller 
necessitates specialized knowledge and typically involves 
adjusting various parameters, including prediction ranges, 
control ranges, and weighting factors. It indicates that the 
method becomes difficult to apply in real-situation building. 

In response to the above challenges, this study proposes a 
simple and efficient model for optimal control of radiant 
floor heating systems. This study explores the impact of 
various indoor and outdoor environmental factors on the 
response time of RFH systems. The parameters pertaining to 
indoor and outdoor environments are initially subjected to 
screening and selection processes. This strategy, requiring 
fewer parameters, allows for the prediction of RFH system 
responses. Then it employs data-driven techniques to identify 
an optimized start/stop control strategy for RFH. 

The methodology's significant contribution lies in its 
reliance on easily measurable, uncomplicated environmental 
parameters for input, highlighting its simplicity and 
applicability. Its seamless integration with the control system 
facilitates rapid adaptation to real-world scenarios. The results 
obtained serve as straightforward environmental state 
reference parameters for the subsequent stages of the control 
strategy, empowering advanced automatic control 
decision-making processes.

2. Methodology

2.1 Analysis methods and selection of research objects
  2.1.1 Proposed method

One of the objectives is to predict the RFH system 
response time for optimizing the start-stop control by 
reducing the number of input variables without compromising 
their accuracy and significance, in the following five steps. 
(1) Constructing the dataset: Operational data are extracted 
for the entire heating-up or cooling-down phase and the 
environmental parameters at the current moment and the time 
required to reach the set temperature are calculated with a 
one-minute time resolution (Figure 1). (2) Reduce parameters: 
Use correlation analysis to remove less important and 
complex input variables and simplify future modeling. (3) 
Sort features: create strong links between the remaining 
relevant parameters and further sort among the highly 
relevant variables to optimize the inputs. (4) Create Machine 
Learning Models: Construct machine learning models to 
handle large datasets. (5) Integrate and Calculate RFH time: 
In the final stage, the identified variables are integrated with 
representative inputs and used in a decision tree model to 

accurately calculate the final response time. 

Figure 1. The process of creating a division of data for the training 
set (as an example of the start-up phase). 

  2.1.2 Theoretical analysis
  Decision trees, widely employed in supervised learning for 
classification and regression tasks, construct a tree-like model 
wherein each internal node signifies a decision based on a 
feature, and each branch denotes the corresponding 
outcome(3). The overarching objective is to classify or predict 
a target variable through a sequence of decision-based steps. 
The process begins with the entire dataset at the root node, 
subsequently splintering the data at internal nodes based on 
the optimal feature and value. This split aims to enhance the 
homogeneity of resulting subsets regarding the target 
variable. The determination of the best split depends on the 
problem type, utilizing metrics like Information Gain or Gini 
Impurity to minimize impurity in the branches. This 
recursive splitting continues until a predefined stopping 
criterion, such as achieving a certain level of purity or 
reaching a maximum tree depth. Terminal nodes, or leaves, 
represent the ultimate prediction for the target variable. In 
classification, this could be the dominant class within the 
subset, while in regression, it might be the average value. 
This structured approach provides transparency and 
interpretability, making decision trees a valuable tool in 
various data-driven applications. While there are different 
formulas depending on the task and splitting criteria, here's a 
common one used for classification problems called 
Information Gain (IG):

IG(S, A) = Entropy(S) - Σ |Si| / |S| * Entropy(Si)     

where, S: The entire dataset at a particular node; A: A 
specific feature (attribute) being considered for splitting; Si: 
Subsets of S created by splitting on feature A (one for each 
possible value of A); Entropy(S): The initial "impuri-ty" of 
the dataset S, measured using entropy (measures the 
randomness or uncertainty); |Si| / |S|: Proportion of data 
points in subset Si compared to the entire dataset; 
Entro-py(Si): Entropy of each subset Si after the split. 

2.2 Experiment
To determine the indoor environmental parameters and 
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their correlation with the actual operational effectiveness of 
the RFH, we collected data from a public building located 
in Ansan City, Korea (37°20'19"N, 126°48'8"E) for a 
2-month heating season. The three-story building is primarily 
used for kindergarten operations, with classrooms and offices 
on the first and second floors, and a kitchen-dining room 
and large activity space on the third floor. The radiant floor 
heating system is used as the main heating system in this 
building. 

During the heating season operation, there is no 
mechanical ventilation inside the classrooms, but there is 
natural ventilation through the windows facing outside. These 
windows are usually opened during student meals at midday 
and remain closed both before members enter and after they 
leave. The collection points were mainly arranged in 
individual classrooms, and the collection of data on 
environmental parameters (indoor and outdoor temperature 
and humidity, CO2) and the operation of the RFH system 
was carried out with a 1-minute temporal resolution, with 
continuous measurements being maintained on both weekends 
and weekdays.

3. Results and discussion

3.1 Parameter selection 
Figure 2(a) unveils a noteworthy association (Pearson 

correlation coefficient > 0.9) between the corresponding 
temporal aspects of Radiant Floor Heating (RFH) and 
outdoor air temperature. This observation signifies the 
impactful influence of outdoor temperature on the time of 
heating. Notably, the correlation coefficient for indoor 
temperature similarly exhibits positive correlation 
characteristics, with a coefficient of around 0.9. Furthermore, 
the correlation analysis involving solar radiation and system 
consumption time indicates a positive relationship. However, 
by calculating the GINI index in the decision tree, among 
the prioritization of features for the refined variables, it 
becomes evident that outdoor temperature encapsulates certain 
aspects of solar radiation information, in Figure 2(b). 
Consequently, the influence of solar radiation is 
overshadowed by the significance of the first two factors, 
resulting in a consequential reduction in the decision tree 
input variables.

3.2 Model development
The primary advantage of the decision tree algorithm lies 

in its graphical representation of decision trees, facilitating 
user comprehension. Moreover, users can directly derive 
classification rules from the decision tree generated by the 
algorithm, which can subsequently be converted into 
‘IF...THEN’ format. The IF statement represents the diverse 
conditions and the THEN statement suggests the operation of 
the heating system depending on the conditions. Each 
traversal path from the root node to the leaf node within the 
decision tree corresponds to the derivation of a decision 

classification rule, wherein the test conditions along the path 
constitute the conjunctive terms of the rule's antecedents, and 
the class label assigned to the leaf node serves as the 
consequent of the rule.

(a)

(b)
Fig 2. (a): Correlation analysis of environmental parameters. 

(b):Ranking of importance of filtered variables. 
During the construction of the decision tree model, the 

selected feature data include indoor and outdoor temperatures, 
timestamps, carbon dioxide concentration, and other relevant 
parameters. However, following algorithmic processing and 
model parameter adjustment, insignificant factors are 
disregarded, resulting in the identification of primary 
influencers on the response of the RFH system. Notably, 
outdoor temperature emerges as the predominant factor, 
followed by indoor temperature. While other factors have 
some influence but to a lesser extent. 

For instance, the initial rule suggests that when the 
outdoor temperature falls below -3.05°C and the indoor 
temperature remains below 21.55°C, the system's activation 
and operational duration may exceed 147 minutes (See 
Figure 3). Furthermore, a comprehensive rule analysis reveals 
that variations in solar radiation rates, timing, and 
temperature changes per unit of time contribute marginally to 
the RFH system's response time. Consequently, building 
operators are advised to proactively monitor outdoor 
temperature fluctuations and appropriately guide RFH system 
operations to enhance indoor temperature response accuracy.
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Fig. 3  Specific split points of the decision tree model.

3.3 Model validation
During startup, the fundamental input variables involve 

indoor and outdoor temperatures, selected for their significant 
influence on the Radiant Floor Heating (RFH) system's 
response time and their easy measurability. In this 
investigation, the machine learning approach adopts the 
decision tree algorithm. Decision trees offer clear 
prognostications by unraveling complex predicaments into a 
series of explicit decision rules(4), making them suitable for 
optimizing RFH control in various scenarios.

Fig. 4  Distribution of predicted and measured values during startup 
(a) and stopping (b) operation phases.

The expected RFH response time, illustrated in Figure 4, 
represents the minutes deduced from the methodology 
expounded in this study. A comparison with the actual 
elapsed time in the recorded dataset accentuates the 
effectiveness of the proposed strategy. Figure 4 presents the 
findings, revealing an R2 of 0.954 for the decision tree 
model during the initiation phase, indicating its adeptness in 
delineating the relationship between temperature and system 
response time. Moreover, the R2 for the projected time in 
the subsequent cessation phase is 0.981. The agreement 
between the anticipated and actual values is conspicuous in 
the figure, validating the accuracy of both results. The 
spatial configuration of data points in Figure 4 indicates a 
more uniform trajectory in the predicted response times 
computed by the advocated methodology.

4. Conclusion

Radiant Floor Heating is considered the prominent heating 

system for improving thermal comfort and advancing energy 
efficiency. However, the slow thermal response characteristics 
of RFH make it difficult to control as intended. Optimal 
heating control of RFH is considered the best solution 
assuring thermal comfort and efficient energy consumption. 

In this paper, a simple and efficient optimal control 
method for RFH is proposed. The novelty of this research 
lies in the proposed model, which requires only simple 
parameters that can be easily collected, and it involves a 
small computational time. Therefore, this model is easily 
applicable in real buildings. the following conclusions were 
obtained through modeling and analysis: 

(1) The proposed model for optimal control in RFH is 
characterized by applying simple parameters. It focuses solely 
on indoor and outdoor environmental factors to accurately 
predict optimal start and stop timing in RFH. Concurrently, 
the scrutiny disclosed that miscellaneous environmental 
parameters lack the significance attributed to indoor and 
outdoor air temperatures in influencing the RFH system's 
response time, showcasing correlation coefficients 
approximately settling at 0.9. Due to the novelty of the 
proposed method, optimal control for RFH can be easily 
implemented in real-situated buildings. 

(2) The envisaged decision tree forecasting algorithm 
demonstrates commendable computational efficiency in 
delineating the intricate interplay between indoor and outdoor 
environmental variables and the response time dynamics of 
the RFH system. The refined onset R2 at the initial RFH 
system phase attains 0.95, while the prognostication R2 for 
the optimized cessation in the subsequent phase ascends to 
approximately 0.98. 

(3) In practical scenarios, the advocated approach 
necessitates solely the measurement of indoor and outdoor 
air temperatures along with CO2 concentration, facilitating 
streamlined applicability for the optimized initiation and 
termination control of RFH. This approach seamlessly aligns 
with the overarching objectives of minimizing energy 
consumption while concurrently enhancing thermal comfort.
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