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Abstract

Reinforcement learning (RL) offers tremendous promise for optimizing energy efficiency, enhancing occupant comfort, and improving 
sustainability in smart buildings. However, a significant gap exists between the idealized performance observed in simulations and the 
challenges encountered during real-world implementation. This paper investigates the primary obstacles to successfully deploying RL in smart 
buildings. Specifically, we address the simulation-reality gap, data-related challenges, safety and robustness concerns, adaptability issues, and 
the role of human factors in building trust and acceptance. The paper concludes by examining existing work, highlighting open research 
directions, and emphasizing the potential of RL to transform the way smart buildings operate.
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1. Introduction
*Smart buildings leverage interconnected systems and 

sensors to dynamically manage operations like heating, 
ventilation, air conditioning (HVAC), and lighting. Deep 
reinforcement learning holds great potential for automating 
these systems, leading to significant energy savings, increased 
occupant comfort, and improved alignment with sustainability 
goals [1]. Unlike traditional control, DRL agents can learn 
complex strategies, adapt to evolving conditions, and 
optimize performance across multiple objectives.

While simulation studies demonstrate DRL's capabilities 
for building control, real-world application is far less 
common [2]. The transition from simulation to physical 
implementation presents unique challenges. These challenges 
include managing the disconnect between simulations and 
complex building environments, handling limited real-world 
data, ensuring safety, designing robust and adaptable systems,
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and incorporating the crucial element of human trust and 
interaction.

2. Research methodology

This systematic review aims to synthesize existing research 
on the challenges associated with real-world implementation 
of reinforcement learning (RL) control in smart buildings. 
The following methodology guided the research: 

2.1 Search Strategy
Research databases such as IEEE Xplore, ScienceDirect, 

ACM Digital Library, Web of Science, and Google Scholar 
were used for the literature search. The following search 
terms and their combinations were used: "reinforcement 
learning", "smart buildings", "real-world implementation", 
"implementation challenges", "HVAC control", "lighting 
control". The search focused on papers published within the 
last 5-10 years to capture the most recent advancements and 
challenges in the field.

2.2 Inclusion/Exclusion Criteria
Included studies met criteria: use of RL for smart 

building control, discussion of real-world deployment 
challenges, and publication as peer-reviewed research, 
conference proceedings, or technical reports. Excluded were 
studies solely on RL simulations, lacking critical discussion 
of implementation challenges, or existing review papers (to 
be analyzed separately for common themes).

2.3 Data Extraction and Analysis
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The selected papers were systematically reviewed. The 
focus was on extracting data about the specific smart 
building systems targeted by RL (HVAC, lighting, etc.), the 
nature of the implementation challenges identified 
(categorized into data-related, safety and robustness, 
adaptability, and human factors), proposed solutions or 
techniques to address those challenges, and areas identified 
as requiring further research.

2.4 Synthesis
The findings from the extracted data were synthesized to 

create a comprehensive map of real-world RL implementation 
challenges in smart buildings. This involved identifying 
common themes, highlighting limitations in existing 
approaches, and proposing promising research directions for 
bridging the simulation-reality gap and enabling practical 
applications of RL in building control.

3. The Simulation-Reality Gap

Simulations provide a controlled setting for RL 
experiments, but they often oversimplify real-world 
complexities. This includes simplified equipment models 
ignoring efficiency degradation, perfect sensor data 
assumptions neglecting calibration errors, and consistent 
occupancy patterns not reflecting real dynamics. These 
disparities can result in RL policies optimized for simulation 
but performing inadequately in reality.

4. Challenges and Potential Solutions

Addressing several challenges is crucial for the successful 
deployment of Reinforcement Learning (RL) in optimizing 
smart buildings [4]. Data-related hurdles include the scarcity 
of quality data for training RL models, the necessity for 
sensor calibration and fault detection to maintain data 
integrity, and the delicate balance between optimization needs 
and occupant privacy in multi-occupant settings. Ensuring 
safety and robustness is also paramount [5], requiring safe 
exploration methods during early training, techniques to 
uphold hard constraints, and robust strategies for handling 
unforeseen events to prevent system collapse. Adaptability is 
essential for long-term RL success, necessitating controllers 
that can adjust to changing building use, equipment 
upgrades, and shifting optimization priorities through 
techniques like transfer learning, continuous online adaptation, 
and dynamic reward shaping [6]. Finally, human factors must 
be considered, including building trust through explainable 
RL and providing mechanisms for human oversight and 
intervention [7].

5. Existing Work and Open Research Directions

Existing work on real-world RL in buildings offers some 
solutions but has limitations [8]. Key open research 

directions include developing techniques for data 
augmentation to bridge the simulation-to-reality gap, 
establishing robust safety protocols, enabling adaptive 
learning for continuous improvement, increasing the 
explainability of RL decision-making, and fostering effective 
human-AI collaboration in building management.

6. Conclusion 
Bridging the simulation-reality gap is vital to realizing the 

benefits of RL in smart buildings. This paper outlined the 
key obstacles hindering successful deployment. Focused 
research on data-driven solutions, safe and robust RL, 
adaptability, and human-centric system design is crucial. 
While challenges remain, the potential payoff is immense – a 
new generation of smart buildings that are truly intelligent, 
efficient, and responsive to the dynamic needs of their 
occupants.
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